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STABILITY OF LAMINAR ELECTRON LAYERS

I. Introduction

There exists by now a truly enormous literature on the subjects of the
S

equilibrium and stability of layers of charged particles in various

geometries. The earliest studies1-7 were conducted in order to understand the

"slipping stream" or diocotron effect in the operation of the first

magnetrons. Somewhat later the importance of curvature effects was realized

when beams became relativistic, as in particle accelerators; the resulting

"negative mass" instability 8'9 completely dominates the planar beam diocotron

effect at sufficiently high energies (only a few tens of keV in many practical

devices of interest). The negative mass effect was also investigated in

connection with some controlled fusion research devices 10- 12 and other

machines.
1 3

In recent times there has been renewed Interest in high power, high

efficiency microwave devices as well as in accelerators capable of high

current operation. Spurred by the discovery of the electron cyclotron maser

(or gyrotron) effect, 14 - 1 6 research in the field of short wavelength, high

power microwave devices requiring no slow wave structure has been vigorously

pursued. 1 7 Operation of these new devices depends fundamentally on the

negative mass effect as enhanced by a synchronism of the particles' angular

motion with the temporal and angular variation of a "cold" waveguide mode.

This enhancement, though not called the maser effect, was first noted in the

classic work of Briggs and Neil 0 and has been further elaborated in ref. 18.

The acceleration of large currents of electrons is a formidable problem

which has also received considerable attention recently. In cyclic devices it

is possible to construct high current equilibria in many cases19-21 but

various instabilities, the negative mass instability prominent among them, may S

limit achievable currents to smaller values than equilibrium considerations

Manuscript approved April 5, 1984.
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alone would suggest. In these devices the effects of self fields on the

negative mass instability and on the stabilization mechanism become important

to consider; in one device these effects have been predicted to lead to a

peculiar double-valued feature in the current vs. energy spread stability

curve. 22 It was this particular result which initially prompted the study of

self field effects reported here for a simpler (2D) model.

The model we consider consists of a layer of charged particles (we will

think of them as electrons but ions may be trivially substituted) moving in

circles about a common axis, as shown in Fig. 1. This restriction to laminar

or "cold" electron flow will tend to overestimate actual growth rates of the

modes we study since the effects of betatron oscillations and of nonaxis-

encircling particles are stabilizing. An analysis including these effects is

properly done in phase space using the correct equilibrium distribution

function; such an analysis is significantly more complex than that given here

and may be carried out only in an approximate way. The laminar flow case

includes all essential physics and has great simplicity, allowing an exact

treatment of the linearized problem, to recommend it. The equilibrium,

discussed in the following section, is supported by a combination of self and

externally applied radial electric and axial magnetic fields. We impose no

a priori restriction on the relative magnitudes of the three terms--

centrifugal force, electric force, + x A force--in the equilibrium force

balance. This configuration is thus a reasonable model for the Astron,
23

magnetron, gyrotron, orbitron,2 4 peniotron2 5 and heliotron2 6 and includes

correctly the crucial radial and azimuthal particle dynamics found in particle

accelerators. This "E-layer" model has the virtue that the linear stability

problem may be formulated exactly, for arbitrary particle energies, including

all effects of self fields and all effects of relativity and

2
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electromagnetism. It is perhaps a bit surprising that, despite the

venerability of the topic, this exact formulation has not been carried out

earlier.2 7 The eigenvalue problem governing the stability of the E-layer is

derived and analyzed in Section III, below.

The desirability of a completely general treatment encompassing many

devices and a large parameter space is related to the ease with which various

familiar results for special cases may be recovered in appropriate limits. A

dispersion relation for the so-called longitudinal mode obtained analytically

in the thin beam limit from the ordinary differential equation governing the

RF field reproduces all standard special case dispersion relations (negative

mass, electron cyclotron maser, diocotron) in a straightforward way; in doing

so, a puzzle is resolved concerning the survival of a finite negative mass

growth rate in the planar limit and a method suggests itself on how either to

maximize or eliminate altogether the negative mass instability growth.
2 8

Extensive testing of the dispersion relationship against a numerical solution

of the eigenvalue problem shows excellent agreement, as reported in Section

III. The classical diocotron dispersion relation is discussed and recovered

from our formalism in Section IV.

Our treatment of the transverse mode, which has been invoked in the

theory of the peniotron device2 5 is somewhat less comprehensive. This mode is

unstable only when electron motion is synchronous with a cavity mode and so is

of a more specialized nature than the negative mass or diocotron instabilities

which arise from intrinsic properties of geometry and shear flow, not from

interaction with external structures. Still, the utility of the transverse

mode for microwave generation may not yet have been fully exploited. We

comment on some features of this mode in Section V.

3
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II. Cold E-Layer Equilibrium

We consider an idealized model of an electron layer in which all

electrons circle a common axis as shown in Fig. 1. We will neglect the

effects of betatron oscillations and of axial motion in both perturbed and

unperturbed states. Inclusion of betatron oscillations or axial perturbations

is expected to have a stabilizing influence on the collective modes we will

study. We further assume that in general the layer is enclosed in a coaxial

waveguide with smooth, perfectly conducting walls at r-a and r-b, as shown in

the figure. Absence of either or both walls results only in a change of

certain boundary conditions.

Though this model is simple to describe it is surprisingly rich in

content. Depending on beam and geometric parameters and types of applied

fields, it may be taken as a good description of the Astron,
23 gyrotron, 17

orbitron,24 peniotron,25 heliotron26 and cross field microwave devices and may

also be of some interest in accelerator8'9 and space physics stability

problems as well as in the theory of magnetic insulation.

The equations governing the equilibrium quantities v (r);, E (r)r,

B (r)z for a specified density profile n (r) are

Yv - e [E o+ v B

r m(00)

1 d
rdr (rEo) --enIco (2)

dB

--r uoenovo, (3)

where -e and m are the electron charge and mass, y0 is the usual relativistic
2- 1/2

factor, (1-(v 0/C) 
2 ) , c is the speed of light in vacuum, and o and V are
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the permittivity and permeability of free space. In addition to the density

profile, we take as given the total electrostatic potential difference and the

total magnetic flux contained between r-a and r-b.

Using these conditions the solution to Eq. (2) is immediate and Eqs. (1)

and (3) may be combined to yield a single differential equation for

U oy v Voo/C:

2~2

u/_ 2u - y/7 2 oh
"r u~ 1 0 C 4)

2 z 2 2

where E - ,p/,o, p " e no/mo ° is the plasma frequency of the layer,

O v 0o/r, and a prime denotes d/dr. In Eq. (4) we introduce the important

quantity h, defined by,

erE22n03 (5)

mc B Yo

which is (1/y ) times the ratio of the electric force to the centrifugal force

experienced by an electron in equilibrium at radius r. S

Equation (4) must be solved subject to an initial condition u(rl)

satisfying Eq. (1) which we rewrite in the dimensionless form

u2 . Y(2+1)1/2 + aBU (6)

where a E - erE /mc2 and N - erBo/mc. aE is known at r, but a. is not. The S

entire equilibrium problem then reduces to choosing aB(rl) such that the

resulting total flux

b
0 a 21J dr rB0  (7)

a

5
0 Il



is a specified number. A numerical method for doing this is described in

Appendix A. Here we briefly consider the character of some of the

solutions. The equilibrium thus constructed will be used in the numerical

solution of the eigenvalue problem in Section III.

Given aE(rl) and acB(rl), Eq. (6) may have 0, 1, or 2 real valued

solutions for u(r1 ), depending on the values of aE and aB; without loss of

generality we take cB(rl) > 0. The situation in the aE- aB plane is then

depicted in Fig. 2. By a positive root, denoted by (+) in the figure, we mean

a right-handed rotation about t (clockwise, looking in the direction of I).

The equation for the boundary curve C in Fig. 2 is the condition for Eq. (6)

to have a double root:

u (u -a8)
2E (u,2+ 1)1/2 (8)

* 13)/2snh[ sin-l[1(3/2 )3/B

where u - (8/3) s nh On C, I + h 0.

There are three basic types of equilibria found in devices of practical

interest: Type I, in which a magnetic field is used to balance centrifugal

force (aE is small, e.g. Astron, gyrotron, particle accelerators); Type II, in

which electric and magnetic forces balance (inertia is small, e.g. crossed

field microwave devices); and Type III, in which an electric field is used to

balance centrifugal force (aB is small, e.g. orbitron, heliotron). Type I may

have only "+" roots while Types II and III may have either "+" or "-" roots.

In the following analysis, however, we make no assumption regarding the

relative magnitudes of the electric field, magnetic field, and inertia terms.

It is reasonable to ask whether stability considerations favor one type

of equilibrium over another for a layer of given kinetic energy. To our

knowledge there has been no definitive answer to this fundamental question.

6



For radiation source applications one arguably might want the most unstable

configuration while for other applications, like accelerators, one would want

the most stable one. We proceed to examine the stability of a general

equilibrium describable by Eqs. (1) - (3) in order to address this question,

our goal being a complete parametric study of the small signal behavior.

III. Stability of the Layer

We consider perturbations on the equilibrium described in the previous

section. The equations governing the layer are, simply

( L + . )Y+ = - e(g + )(9)

at v m (9

= - = -en/c (lOa,b)

at

2 at -1 env = 0 (lla,b)
c

where n is the number density. 0

Our discussion will be limited to consideration of perturbations in

the r and 8 directions, for reasons described below. Writing all

quantities T as *

7(r,O,t) - To(r) + f - '1 (12)

where Y 0o(r) is the equilibrium value, and retaining only terms linear

(t)
in T 1  one finds that the linearized versions of Eqs. (9) - (11) decouple

into two sets governing {vlrvl,,E r,ElO,Blz,nl} and {v1z,Elz,Blr1,B 0} which S

we identify as TE modes and TM modes respectively. (Here and below we

7



write T() (r;w) simply as 4l for all first order quantities.) The TM modes

may easily be shown to be neutrally stable for perfect conductor boundary

conditions (damped, for resistive wall boundary conditions). They represent

simple oscillations of the electrons along the z direction in response to the

cavity mode fields; the equilibrium model does not provide any free energy to

excite the TM modes. The TE modes, on the other hand, are potentially

unstable. If we had allowed a finite axial wavelength for the perturbed

quantities the TM and TE modes would be coupled, but it has been found I0 that

the effects of finite axial wavelength are stabilizing for the coupled case.

Consequently we focus attention exclusively on the TE waves.

The Euler equation (9), upon linearization, gives the fluid response in

terms of the RF fields of the TE wave:

-iVr-oPV --- [E + v ] (13a)
Ir- o 10 my 0Ir o lz

e

1)roQ r-islvi = - -- 5 E10  (13b)
my0

where we have defined n = w-tw , P = 2 (l+h), Q - v /uio+ h, and
d

V.*dr vo" Using the solution of Eqs. (13a,b) in the definitions of the RF

currents Jlr and J and combining the linearized Maxwell's equations (10) -

(11) allows one to write a single differential equation for 4rE10 :

d d

r-(r-) +Cd=0 (14)

where

8



1

A- A-[1 + C/(Dy) (15)

0*

~~~~ 20 .
1 1 2 -1 -1

n W 2 w(~) +r 20 A D &(l+h)I
Y 0o

0 22 0+A D(/)(7- - 8o) + 1 (16)

C

22_ 2 D-1 (Q 2r2/c 2  (17)

c

D - PQ - n 2 /w = I-E/Y 2 +Y 2 h2_ n2/W 2 (18)

and other symbols have been defined previously. [Equation (14) is identical

to Eq. (4) of Ref. 28, except for a few differences in notation.]

The other RF fields are given in terms of by

El= irA-l[(- + &D-- Qv/ L D-l(l+h)O] (19)

cc

C

and the perturbed velocities may be easily recovered using Eqs. (19) and (20)

in Eqs. (13a,b); the perturbed density is obtained from nt-(o/e).

Equation (14) must be solved subject to O(a) - $(b) - 0 (if the walls are

perfect conductors) in order to obtain the eigenvalue, o). Hereafter we shall

assume that the electron layer is restricted to the annular region rl<r<r 2

[Fig. T]. In this case it is convenient to formulate the problem using the

explicit vacuum solutions at r-r I1 and r-r 2 and to match the appropriate

logarithmic derivatives, as is often done in microwave tube theory, in order 4

to isolate tue effect of wall boundary conditions. Defing, then, the

inEq. 13~b;th prtrbddesiy s btiedfrm ~u-e~e).~.9



normalized admittances evaluated just outside of the layer, we have

b+ =- E lerm r +  w 2 r 2 2 2 + (21a)

2  2 2 rfr 2

C

b =i r-I _ (21b)

2c
We stress that the normalized wave admittances b+ and b_ depend only on the

waveguide geometry exterior to the electron beam. They are independent of the

beam or its dynamics. b+ and b- are evaluated explicitly in Appendix B for

some practical cases of interest.

Let us examine Eq. (14) more closely. In the complex r plane Eq. (14)

has singularities at points where

W - XW 0  0 (22)

D + / 0 (23)

A 0 0. (24)

The first of these clearly represents a match between the mode frequency and a

harmonic of the particle "cyclotron" frequency. Such a match is present in

the negative mass instability, cyclotron maser instability, and diocotron

instability all of which are described by Eq. (14). Indeed, these may all be

considered to be the same instability in this sense, 18 though the individual

names are still useful. The negative mass instability is fundamentally a

rotational effect. The classical explanation attributes it to the decrease of

circulation frequency with particle energy leading to growth of azimuthal

bunches. The negative mass instability operates without regard for the cavity

10



modes of the vacuum chamber; the fields are not well approximated by the

cavity mode. The instability is strongly enhanced however if Re(w) happens to

be a cavity mode, as first pointed out by Briggs and Neil. 1 0 In recent years

this synchronous case has been given its own name, the cyclotron maser

instability, mainly in the literature of gyrotron research.
1 7' 1 8

The diocotron instability, originally studied in connection with the

development of the first cross field microwave devices, is a "residual"

instability in this context. It is what survives in the non-relativistic

and/or planar limits. The perturbed electric fields are basically

electrostatic in nature and are strongly localized at the position of the

layer. The equation governing the diocotron instability1 ,4 ,6 ,7 ,2 9 may be

recovered formally from Eq. (14) by taking c+a. It is discussed further in

Section IV, below.

A mode satisfying Eq. (22) is sometimes called the longitudinal mode

since the major effect on the beam is azimuthal bunching. Equation (23), on

the other hand, describes what has been called the transverse mode which

involves little bunching, but significant transverse (radial) motion of the S

beam. If h is small, Eq. (23) becomes

w- t = * w • (25) 0

This transverse mode has been invoked to explain the operation of the

peniotron 25 when w corresponds to a cavity mode. In the nonsynchronous case 0

the transverse mode is stable in the absence of resistive walls, as pointed

out in ref. 10.

Finally we note that Eq. (24) may be loosely associated with an 0

electromagnetic mode. In vacuum only (24) survives as a singularity but in

11
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fact it may be shown to be only an "apparent" singularity;3 0 the vacuum

eigenfunctions are analytic in r, except possibly at r-O.

We proceed to analyze Eq. (14) to uncover the parametric dependences of

the growth rates of the unstable modes. In order to make progress

analytically we consider the case of a beam of uniform density and of

thickness T = r2 - r1 which is much less than its average radius

R = 1 (r2 + rl). If the beam is sufficiently thin it is possible to consider

a Taylor series solution about r-R of Eq. (14), taking care to check at the

end that the singularities are sufficiently far away in the complex r plane,

so as not to disturb the series convergence; 3 1 carrying out this program we

find the dispersion relation

C +1 A1 1G G + T = + -T (G + G )(~- + -g)+GG+ R A_ + A 0 +

3 - 2 C
- () (G+ - G_)( -) - 0 (26)

0

2
correct to order (T/R) . In Eq. (26) G_, G+ are the radial logarithmic

derivatives of * evaluated just inside the layer at r-rl, r-r2 respectively,
obtained by integrating Eq. (14) across the beam edges:

G* = - [:F =b + q(r (27)
r2,1A(r2,1) -k 2,1

where

qr n (1 + h) (28)q(r) = ( . C- ) 1  (8

and

12



0~

(r) + (r-R)A1 + . (29)

(r) =C +...

near r-R.

Expanding G, to order T/R, Eq. (26) then reduces to

b ) + [-Rq' - -- (' b+- q)(-b_+ q) + C (30)
0

where now q and q' are understood to be evaluated at r-R and where in Eq. (30)

we have (temporarily) kept terms only to O(T/R). No assumption has been made

about the E-layer density or current; we have assumed only that the beam is

"thin".

Let us first consider the longitudinal mode, that is, we look for a root

2 2of Eq. (30) with I 2<<W 0. Of the terms within the brackets in Eq. (30) only

the q' and q2 terms behave as 1-2 for small Q. Keeping only such terms, some

algebra gives Qi Im(n):

2 T p (0+2h) 2S(b +b) ( + + O(IT/R)2 (31) 0
i b+ 1 - Y2h2

0

which, for h - 0, is the classical negative mass dispersion relation for the

Astron configuration.I0  (The O(IT/R)2 term is displayed fully in Eq. (36), 0

below.) We remark that Eq. (31), including the second order terms, can be

obtained from the much simplified form of Eq. (26),

G+7 G_ + TG+G_ - 0 (26-)

where terms behaving as n-1 have been dropped from Eq. (26).

13
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Ignoring the O(XT/R) 2 term in Eq. (31) for a moment, we may interpret the

dispersion relationship (31) as follows. As we have seen, the factor

(b+ + b_) represents the effects of the container structure, and the

factor (T/R)i is proportional to the beam current. These two terms always

appear in any dispersion relation involving an electron beam. All dynamical

effects, including those due to self fields, are contained in the factor

2
(8 o + 2h)

M 0 2 2 (32)
(1 + 2oh2)

for a sufficiently thin beam. Some insight into the meaning of this factor

may be had if we note that for small equilibrium densities, E, it is

proportional to dw 0de where - mc2 Y - eto is the total energy of a particle

in the equilibrium:

dw W 0 + 2h + /Y4

10re de me 2  i. +Y2hEf2(3
0 0

At least when & is small then we find agreement with the classical explanation

of the negative mass effect: A rotating beam is unstable (stable) if its

equilibrium rotation frequency is a decreasing (increasing) function of its

(total) energy, that is, M is proportional to the effective azimuthal inertia

(mass). We stress that for finite E this interpretation begins to break down;

Eq. (31) was derived assuming & was finite yet & does not appear in the factor

M but clearly does appear in Eq. (33).

M, though simple in form, has many interesting features. Let us consider

its dependpice on h, illustrated in Fig. 3. Perhaps the most interesting

property of M is that it experiences a change in sign at h - F; 2/2. The

possibility for using this property of equilibria supported by a radially

14
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inward electric field in addition to a magnetic field in order to suppress the

negative mass instability has been discussed elsewhere. 28 We note that since

the factor M is independent of the beam current or of the waveguide dimensions

and represents a purely dynamical quantity, this stabilization of the negative

mass instability by a radial electric field is expected to be valid even in

toroidal geometry, even for high current, very cold beams. (The method is

limited to use for moderately low energy beams, in the MeV range in practice,

since the applied electric field required to change the sign of M from

3
negative to positive is proportional to y , as follows from the definition of

h, Eq. (5).) Note that there is a "most stable" configuration at h--I, at

which point certain singular parts of Z in Eq. (14) vanish identically.

Perhaps equally interesting for microwave generation applications, is the

2occurrence of a "most unstable" point in Fig. 3 at h - /y 0. If we recall

that y2h is the ratio of the radial electric force to the centrifugal force we

observe that the choice y. 2h - 1 describes a configuration in which the
0

equilibrium is supported solely by an electric field (a Type III equilibrium,

in the language of Section II). This result suggests that for a given beam

energy, a microwave source such as the orbitron2 4 in which an annular beam

circles a positively charged wire with no applied magnetic field, might have

some advantage over more conventional devices like magnetrons (h<O), inverted

22

magnetrons (h>>l/y ), or gyrotrons(huO). This finding is novel. We remark

that this negative peak in M is sharpest at low energies (small 82).

In the non-relativistic limit, O2+ 0, Y2+ 1, the sign of M is determined
0 0

directly by the sign of h, which remains finite in this limit. Usually we

are accustomed to thinking that the negative mass instability should vanish in

the non-relativistic limit when there is no gradient in the magnetic field.

Here we see however that an equilibrium electric field can affect the sign of

15



the azimuthal inertia just as a gradient in B can. If we define an equivalent

field index, neqv by

-M (34)

eq Y

then

2 y - _ 1 )h

eq (1 + h)2 (5

which vanishes when h does.

One final comment about h must be made. The electric field appearing in

the definition of h, Eq. (5), is due both to the electric charge of the layer

and to any externally applied bias potential. When the contribution of the

electric charge dominates there is some question as to what value of h to use

in Eq. (31) when calculating growth rates since E 0 and therefore h will change

sign somewhere within the layer. For this reason, in all numerical examples

considered below we will assume that h, when it is non-negligible, is

j dominated by the contribution of an externally maintained bias potential.

The analytical results presented up to this point are subject to test by

numerical integration of Eq. (14) subject to suitable boundary conditions. We

9 have written a program to carry out this task. Given a density profile, the

electrostatic potential difference and the total magnetic flux contained

between r-a and b, the program calculates all equilibrium quantities then,

given the mode number t, locates an eigenvalue wi. In all examples below the

density profile is parabolic; we expect good agreement with Eq. (31), derived

using a flat profile, if we identify (T/R) w2with 2(v/y )(c 2/R 2) where v is
p 0

Budker's parameter, the number of particles per unit length times the0
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classical electron radius. All examples use a perfectly conducting wall;

effects of a small wall resistivity, which may be very important under some

conditions, are discussed briefly toward the end of Appendix B.

Though we shall eventually test Eq. (31) for all parameter dependences,

let us first check the interesting dependence on h, discussed above, against a

numerical solution of Eq. (14). Figure 4 presents some typical results. Here

we have illustrated, for two different values of v/y 0 a comparison of

the I - 1 mode growth rates for a thin (TfR -.02) beam as predicted by Eq.

(31) (dashed line) and by a solution of Eq. (14) (solid line). (To be

precise, what Is plotted on the numerical solution curve is Im(z,)/w 0(r))

The transition from stable to unstable behavior occurs at h 2 - 02

-0.278 for this case) independent of &-. This is an important feature of

22

condition, h<-0 0/2, for the negative mass instability is independent of the

beam current. Note that this statement cannot be made on the basis of single

particle orbit theory alone [cf. Eq. (33)1; the stabilization condition is

obtained from collective mode considerations including self field effects.

Actually a small amount of residual growth remains for h less than but very

close to 0 /2, a feature discussed in more detail in the following

section. Agreement between Eq. (31) and the numerical solution is best at

small growth rates which is reasonable if we recall that terms behaving

as 11 were neglected in favor of terms behaving as a- -2 when Eq. (31) was

derived. Equation (31) consistently gives slightly too high a growth rate0

(i.e. it is pessimistic), a feature which will be shown to persist when

variations of other parameters are considered. Notice that the numerical

2

olution confirms the existence of a peak in the growth 
rate for h - 1/y~ 0 as

predicted by Eq. (31), again independent of F.

17



The significant parameters upon which the small signal behavior of the

layer depends include, beside the externally applied bias fields, the geometry

factors a, b, r1 , r2, the current (v), the beam energy y0, and the mode

number t. We proceed to consider the effect of each of these separately on

the growth rate of the longitudinal mode, w - 1w for the specific case of an

Astron-like configuration, h - 0.

Unless otherwise stated all parameters in the cases considered below will

take the following nominal "base case" values: a - 0.5m, b - 2.2m, r1 -

0.99m, r2 - 1.01m, total electrostatic potential difference between inner and

outer walls - 0., total flux between inner and outer walls - (b2 - a 2) Boo

where Boo - 48.2x10-4T is the field required to hold a single particle at

R - lm with y - 3. The radial density profile is always taken to be parabolic

and symmetric about r-R-lm with specified peak value; the base case value is

7 -35x10 /cc which gives v/yo - 3.94x10 - . The base case azimuthal mode number

I is 1, for which b+ + b - 2.50 for w - wo o From Eq. (31) the normalized

growth rate for the base case is 5.6%; the numerical solution of the

eigenvalue problem gives 5.35%.

Figure 5 illustrates the comparison of growth rates as calculated by Eq.

(31) and by a numerical solution of the eigenvalue problem for a range of

currents. Over the wide range considered, the v1/ 2 scaling predicted by Eq.

(31) is shown to hold up extremely well up to values of v/yo of a few

percent. Similar excellent agreement is generally found for variations in

layer thickness (Fig. 6), outer wall position (Fig. 7), inner wall position

(Fig. 8), particle energy (Fig. 9), and azimuthal mode number (Fig. 10). Some

remarks on each case follow.

In the case of varying layer thickness with the maximum density fixed

(Fig. 6) two effects are competing; these are the basic v1/ 2 dependence of the

18
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growth rate versus the stabilizing effect of finite thickness30 (effectively,

finite frequency spread). The finite thickness effect is clearly second order

in (T/R) and is not shown explicitly in Eq. (31) but it is included in all

plotted data of Figs. 5 - 10; the second order term is given explicitly in the

following section. In the examples we have studied, finite thickness effects

have been small and have not been effective in stabilizing the instability.

In Fig. 7 the effect of outer wall position is illustrated. As the wall

is moved in from its base case location at 2.2m the growth rate is observed to

increase dramatically for a while, then to fall off. The reason for the

increase is the approach to synchronism of particle motion with a cavity

vacuum mode, that is, w w tw 0- w vwhere w v is a solution to b+ + b-. - 0;

under this synchronous condition the cavity mode fields act to enhance those

established by the dynamical charge bunching due to the negative mass effect.

This synchronous case has been given its own name, the cyclotron maser

instability, and is put to enormous practical use in the gyrotron family of

microwave devices. 17 While in Figs. 5 - 10 we have consistently evaluated

b+ and b-. at w - Xw 0, near a zero of b+ + b_. this is clearly inadequate and

Eq. (31) should be solved as a cubic polynomial. Empirically we find that

evaluating b+ + b_. at w -1w 0 is adequate when b+ + b- > t.

As the outer wall is moved further inward, past the synchronous point the

growth rate in Fig. 7 drops as b+ + b_ changes sign. This drop is

attributable to a "shorting out" of the azimuthal field E 19as the wall

approaches the edge of the layer. An identical phenomenon is seen as the

Inner wall is moved outward, Fig. 8. Use of an inductive impedance (b+ + b_

(0) to stabilize the negative mass instability has been proposed by Briggs and

Neil.3  We remark that in Fig. 8 no synchronous case is encountered for the

parameters considered, as the inner wall is moved.
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The decrease of growth rate with increasing kinetic energy is documented

in Fig. 9. The basic reason for this decrease is just the relativistic mass

increase: the azimuthal response of a particle to the perturbed field E I is

-1
reduced by a factor ,o for large o" No synchronous cases are encountered

over the range of y considered.

In Fig. 10 we have plotted growth rate versus azimuthal mode number £.

Agreement is good between the dispersion relation, Eq. (31), and the numerical

solution; near synchronous cases occur for 9 - 5 and 9. Though predicted

growth rates are rather large, for the high £ modes, these should in practice

be subject to stabilization by the effects of finite betatron oscillations

which we have neglected in this treatment. In any event we expect the

dispersion relation, Eq. (31), to begin to break down for short wavelengths,

i.e. £T/R Z 0(I), or azimuthal wavelengths on the order of the layer

thickness. A WKB treatment of Eq. (14) carried out for this case yields an

eigenvalue condition, the numerical solution to which would appear to require

more effort than a direct numerical solution of Eq. (14) itself.

Finally, we report that in the initial phase of our investigation, we

attempted to derive the dispersion relationship by constructing a quadratic

form for the differential equation (14), under the assumption that 0 - rElI is

approximately continuous across the E-layer. The latter assumption has been

widely used and has been considered valid 9-1t ,1 7 ,1 8 for a thin relativistic

electron beam. However, this line of investigation led to an incorrect

dispersion relationship if w 2 0(l), even to the lowest order in T/R. In 0
p 0

other words, to account correctly for the DC self fields in the present

Eulerian description, the tangential AC electric field should not be assumed

constant across the E-layer, regardless of the thickness. On the other hand,

our dispersion relationship Eq. (31) correctly accounts for the self fields,
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and is valid for arbitrary beam energy, and arbitrary combination of Eo and

B., as already stressed.

IV. Residual Growth: The Diocotron Instability

Sufficiently close to the "zero mass" points h 2 /2, h+ * ,
0

2Eq. (31) begins to be dominated by the neglected terms of order (T/R) . We

have already observed this phenomenon near the point h = - 8 /2 in Fig 4. In

this section we discuss the point h + * , which extreme is reached in the

planar limit: r + a, Z + a, Z/r = k finite. We remark that the vanishing of
y

the negative mass growth rate in the planar limit, a feature of Eq. (31) and

clearly expected on physical grounds, has not previously been demonstrated 0

analytically, to the authors' knowledge.

The second order term in Eq. (31) is given, in complete generality,

by (IT/R)2 wA where

6 1 [&2(62 + 2h + (l+h) 2

4y( (+h)
2 (1+yo

2h2)

0

2I + 2h)2  -6(1 00 +2h) 2

[ 2 2 2 b + 2.b-  (36) 0
yo(l+ yoh) +

As it stands A includes both the diocotron instability (2 terms) and the

finite thickness stabilization effect3 0 (Fo term) referred to above. The last 0

term of Eq. (36) contains wall boundary effects; specifically we may recover

the stabilization at the diocotron mode due to contact of the layer with

perfectly conducting walls,6 as well as the destabilizing effects of finite 0

wall conductivity.3 4- 3 7 If we assume that the walls are many wavelengths away

21



S

and that the fields are electrostatic then, in the planar limit, b± = 1.

Taking, then, the planar limit, hw - eB /(My ) /Y , only the first
0 0 0 C 0

2 term in Eq. (36) survives and we recover the classical result 4 for the

growth rate of the diocotron mode

Im(w) - IkyTVo/21 (37)
yo0

where the velocity shear v' w/(WY). Of course Eq. (37) may be obtained

by much simpler methods than those employed here; our point is only that it is

recoverable from the present formalism. Note that the dependence on the line

density, v, of the diocotron growth rate is just v ; for the (non-synchronous)

negative mass instability the dependence is v1/2; for the synchronous case it

is1/3.
is

The relationship between the diocotron and negative mass instabilities

has been discussed by Neil and Heckrotte
3 8 and by Lau.1 8 Mostrom and Jones 39

have recently examined the electrostatic case, including the effects of shear

in vz . Davidson and Tsang 29 have reported analytical and numerical results in

cylindrical geometry.

V. The Transverse Mode

An electron moving in a field satisfying Eq. (25) where Re(w) is a vacuum

guide mode may be shown to be acted upon by a nearly constant electric field,

when the motion is averaged over its gyro-orbit. The particle therefore

experiences an t x t drift transversely, toward the wall, which motion brings

the particle to experience yet a stronger electric field. A net transfer of

energy from (to) the particles may be shown to result for the - (+) sign

resonance of Eq. (25). This mechanism of wave growth has been used to explain
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the operation of the peniotron oscillator.2 5

In the planar limit of the previous section, the resonance condition for

the transverse mode, Eq. (23), becomes yo(w- kyvo) = * wc, which is the well-

studied mode of planar magnetron tube theory. 1- 7'3 3'3 4 The factor h, [Eq.

(5)], thus again appears, as it did in Eq. (31), as a measure of the 0

"planarity" of the configuration.

A dispersion relation for the transverse mode may also be obtained from

Eq. (30). Keeping the most important terms we have, approximately 0

1l T 1 1

1b + b_ R A (-b- q)(-b + q) = 0 (38)

I + b)+~~ .. g~ij.
0

where, near the zeroes of A
0

A = 2 (39) 0
0 t2_. i B2(-)2 .2

p ~ o
0

o (I + h)
q = (40)

2 w

where a2 i + y2 h2. Equation (38), using Eqs. (39) and (40), agrees with
0

Eq. (39) of Briggs and Neill0 for h = 0, to leading order in E.

Clearly there are no unstable roots of Eq. (38) near the (simple) zeroes 0

of Ao unless either one of these nearly coincides with a zero of b+ + b_

(a guide mode cutoff frequency) or b+ or b- contains an imaginary part, due to

finite wall resistivity for example (see Appendix B). Thus the transverse

mode (for small h) depends crucially on the interaction of the electrons with

their external surroundings, unlike the negative mass and diocotron

instabilities, the mechanisms of which operate in a manner that is insensitive S

to boundary conditions on the fields at distant walls. In the synchronous
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case, with perfectly conducting walls the predicted scaling of the growth rate

1/2
of the transverse mode with v is v The dependence of the real part of the

frequency of the mode on an externally applied radial DC electric field may

prove useful in some circumstances.

The peniotron interaction is essentially non-relativistic. It relies

heavily on the spatial inhomogeneity of the perturbed wave fields. In

contrast, for longitudinal modes, the spatial inhomogeneity of the unperturbed

motion (i.e. shear) is far more important. Both the transverse and

longitudinal modes can be used to convert the rotational energy of the

electrons to rf waves efficiently, however.

In the planar limit Eq. (38) continues to predict stability in the

absence of a resistive wall yet it is well-knownI-5 that inclusion of a

resonant layer satisfying y0 (w - k yV) = c in the beam leads to wave

growth. The resolution of this contradiction lies in the failure of the

Taylor series solution to Eq. (14), from which Eq. (38) was obtained; the

resulting growth rate is non-analytic in and one must resort to numerical

or other methods 7 to solve the eigenvalue problem.
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VI. Summary

In this paper we have attempted a general treatment of the linear

stability problem for laminar electron flow in cylindrical geometry. The

basic equilibrium state has been taken to be maintained by radial electric

and/or axial magnetic fields (Eq. (1)). No azimuthal magnetic field nor any

axial electron motion have been included in the equilibrium state. The linear

stability problem for azimuthal and radial perturbations has been formulated

exactly, fully relativistically and fully electromagnetically, including all

effects of self fields. The stability problem reduces to an eigenvalue

problem for the frequency w, given the azimuthal mode number, X (Eq. (14),

with associated boundary conditions).
I

Our efforts have been focused on the longitudinal mode (Eq. (22)), for

thin beams, which is of considerable importance in accelerator and microwave

device research. We have obtained, and favorably compared to a numerical
I

solution of the eigenvalue problem, a dispersion relation in the thin beam

limit (Eq. (31)) which applies in complete generality to the longitudinal mode

and which reproduces all classical results in appropriate limits. Some

interesting differences among equilibria regarding the negative mass

instability have been pointed out; namely we have found a simple way either to

stabilize or to maximize the growth of this mode. This finding might have

practical consequences in accelerator or microwave tube design.

The longitudinal mode, w - Zwo"0, encompasses the negative mass, electron

cyclotron maser, and diocotron instabilities. The negative mass and electron

cyclotron maser effects are unique to cylindrical geometry; they are

fundamentally relativistic in nature when the motion is supported solely by a

magnetic field. They are even more pronounced, especially for low energy

beams, if the equilibrium rotation is supported solely by a radial electric

25
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field. In planar geometry both of these instabilities are absent and only the

residual diocotron instability remains which itself may be stabilized by

placing the layer in contact with a conducting wall.
6

The transverse mode, w-two - k ao (a is defined following Eq. (40)) has

been used to explain the operation of the peniotron device. When the geometry

is cylindrical (y 0hI<<l) this mode is stable unless the electron motion is

synchronous with a cavity mode and/or resistive walls are present. In the

planar limit awo*-c/o and we identify this mode as the Doppler shifted

cyclotron resonance considered by Buneman4'5 and others1 '6'7'3 3 in studies of

magnetron operation. This mode is the dominant unstable mode for planar, high

density laminar flow.

Finally we remark that the singularities defined by Eq. (24), which we

have not examined here, may be worth some additional study; however we note

that in both the vacuum case,3 0  0 = 0, and in the case of planar Brillouin
flw1,2,5,33 2 .2

flow,'' Wp - We , the singularity, Eq. (24), is removable.
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/ E-LAYER

Fig. . Model of an E-layer. The layer, of infinite extent in z (in and

out of the page), occupies the region r, 4 r < r2 between the walls

of a coaxial guide at ra and rb. The electrons, supported by an

electric field E 0(r)r and a magnetic field B 0(r)z, move in concentric

0 0 0

circles in the equilibrium state, either clockwise or

counterclockwise depending on the equilibrium type.
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STABLE UNSTABLE
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y - 2
0

-9.2/2 I/y°

-1.0 0 h

2
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Fig. 3. Plot of the dimensionless "azimuthal mass" M versus the

dimensionless equilibrium electric field, h. The actual plot shown

is for the case yo M 1.5 but all axis labels are expressed generally

in terms of yo or $0.
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Fig. 4. Normalized growth rate for the negative mass instability versus h

for the case a - 0.6m, b - 2.6m, R - 1.0M, T/R , 0.02,

Yo - 1.5, £ - 1. A solid curve indicates data obtained from a

numerical solution of Eq. (14); the dashed line is a plot of Eq.

(31). The upper pair of curves is for v/y - 7.88 x 10- 3 ,

- 1.42; the lower pair is for v/yo M 1.57 x 10- 3 , - 0.28.
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10- IOC 1 101

0

Fig. 5. Normalized growth rate for the negative mass instability

versus v/y for the "base case" parameters: a - 0.5m, b = 2.2m,
0n

rI - 0.99m, r2 - 1.01m, Y 0 3, t - 1. A solid curve denotes data 0

obtained from a numerical solution of the eigenvalue problem; a

dashed curve denotes data from the dispersion relation, Eq. (31).
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Fig. 6. Normalized growth rate for the negative mass instability versus

layer thickness. All parameters take their base case values, (see

text) except that the peak density in the parabolic profile

is 107/cc.
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b/R - >
Fig. 7. Normalized growth rate for the negative mass instability versus

outer wall position. All parameters take their base case values.

(See text.) Near synchronous conditions, w0 -w where , is a

waveguide mode satisfying b+ + b_ 0 0, the negative mass instability

is strongly enhanced and Eq. (31) should be solved as a cubic

polynomial. The synchronous or enhanced negative mass instability is

often called the cyclotron maser instability.
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Fig. 8. Normalized growth rate for the negative mass instability versus

inner wall position. All parameters take their base case values.

p (See text.)0
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Fig. 9. Normalized growth rate for the negative mass instability

versus yo. All parameters take their base case values, (see text)

except that the peak density in the parabolic profile is l08 /cc.
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Fig. 10. Normalized growth rate for the negative mass instability versus

azimuthal mode number 2. All parameters take their base case

values. (See text.) A + denotes a result from Eq. (31) and

an x denotes a result from a numerical solution of the elgenvalue

problem.
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Appendix A

Technique for Numerical Solution of
Equilibrium Problem •

In this Appendix we describe a simple technique based on Newton's method

which we have used to solve a certain eigenvalue problem associated with the

calculation of laminar E-layer equilibria. Given the electric field which is 0

trivially solved for, having specified the density profile and potential on

one wall, we must find the momentum profile, u(r) and the field B (r) subject

to the constraint of specified total flux Eq. (7). The total flux might be 0

specified in an experiment in which a beam is injected and contained in a

chamber for less than a magnetic diffusion time.

Let us cast the problem in terms of the dimensionless fields, aE and aB

defined in the text following Eq. (6). The problem then is to find u(r) and

aB(r) subject to

b
f dr oB = F = specified constant (A-1)
a

where u and aB satisfy
2 2

1-/y2 - yoh
U,= . [. 0 0 (A-2)

2IW
B P (A-3)

c

u2 - aE(u2+l)/2+ aBU (A-4)

for r 1 <rr 2. Equation (A-2) guarantees that if u(r,) satisfies Eq. (A-4) then

u(r) will do so for all r. The algorithm proceeds as follows: An initial

guess is made for aB(r1) using the value of the externally applied B field,
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say. Using the known value of aE(rl) the roots (two, in general) of Eq. (A-4)

are found and the one corresponding to the equilibrium of interest is chosen.

Equations (A-2) and (A-3) are then integrated and the difference

b
f dr aB- F = D (A-5)
a

is calculated. aB(r I ) is then adjusted according to

D

SBn+l Bn b ahLn(r) (A-6)

Sfdr an
a aB,n(rl)

where the subscript n denotes an iteration number. The loop is stopped once

D* is less than some specified tolerance.

It remains only to describe the evaluation of the denominator in Eq.

(A-6): The dependence of aB(r) on its initial condition at rI is found during

the integration of Eqs. (A-2) and (A-3) by simultaneously integrating the

equations for aaB(r)/3aB(rl) and au(r)/aaB(rl) which are simply obtained by

explicitly differentiating Eqs. (A-2) and (A-3) with respect to aB(rl). The

initial condition au(r 1 )/aB(r ) is obtained from Eq. (A-4).
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Appendix B

Evaluation of the TE Wave Admittances

In this Appendix the normalized admittances b± referred to in the text in

Eqs. (21a,b) are given for the geometry of Fig. 1; the toroidal and planar

cases are also discussed.

In the vacuum regions a<r<rI and r2<r<b the wave equation Eq. (14) is

r- -dr" < - + 0=0 (B-1)d__2 2 2_d2

2
C

the general solution to which is

* x [CIJ;(x) + C2 Y'(x)] (B-2)

where x = wr/c, J and Y are the standard Bessel functions, C I and C2 ared

constants, and in this Appendix a prime will denote -. Note that the

"singularities" at x 2  X 2 in Eq. (B-i) are only apparent, not real, i.e. * is
analytic at these points. The other vacuum fields are

Bi d- (B-3)
lr x2_92 dr'

x -

B1 z  c lr (B-4)

* Using the definitions in the text Eqs. (21a,b), it follows that b± may be

generally written

b I [ c l+ ( x 2 ) + C2+YX(x 2 ) ] (B-5a)b+ - x 2 CB2+ 
+
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b [ 
J ( x I + C 2 Y. I ( x 1 .)

X1 C1 J(x) + C2 Y;(x1)
]

where x, 2  rl 2 /c.

The ratios C1+/C2
+ and C1-/C2- are determined by the boundary conditions

at r-b and r-a respectively. Some special cases of interest are:

1. Perfectly conducting wall at r-rw: (rw= a or b)

C1 /C2 = -Y; (Xw)IJ (xw )  (B-6)

2. Wall with (complex) dielectric e(w):

Y (x ) - (z/%)Y (x )- lnZ(y)
C /Iw o 1 w dy] (B-7)

dy
12 J;(xw) - ( / o)J. (Xw) ylnZ(y)

where 4 is the surface impedance, (U/) 1/2, Co M 376.7S,

y- Kr w , f-W (CU)1 /2, Z(y) - J1 (y) for inner wall,

HX(1)(y) for outer wall where H (1) is the Hankel

function. e and j refer to the wall material.

3. No inner wall:

C2  -0 (B-8)

4. No outer wall:

C1+ - i (B-9)
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5. Electrostatic limit; perfectly conducting walls at r-a,b:

B ++ B_ +1

b+ = B+ - 1 b- = B_ - 1 (8-10)

where B+ - (b/r2)
21 and B = (rl/a)2t. Note that bi > 0.

6. Planar limit ( r-,, Z-; I/r=k . b-a, b-rl, b-r2 , r2-rI , all

remain finite); perfectly conducting walls:

b+ M - (k y/a) cot [a(r (-l)

b_ - - (k y/a) cot [a(b-r2) ]  (B-12)

where a = (w2/C2- k The planar limit of (B-10) isy-

just the electrostatic limit of (B-i) and (B-12), as

expected, in which case

b+ =coth [k y(b-r2)]  (B-13) 0

b - coth [ky(rl-a)]. (B-14)

When a wall is resistive the resulting dissipation is represented by an

imaginary part in the corresponding admittance bl. (In Eq. (B-7) e(w)-ia/w

for a good conductor of conductivity a.) That such dissipation can lead to

disruptive beam instabilities, even for a "positive mass" beam, has been known 0

since the pioneering work of Neil and Sessler 35 and Laslett, Neil, and

Sessler.3 6 It is in fact these resistive modes, rather than the

(fundamentally dynamical) negative mass instability which are thought

ultimately to limit the beam current in cyclic electron accelerators.
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If a wall is not smooth but contains some structures (cavities, fins,

etc.) a common practice is to calculate an approximate value for the

admittance and to use it as a boundary condition for some approximation to Eq.

(14) in the text. In this case however the problem is not being-treated fully

self consistently since the equilibrium of Section II would not be strictly

correct, i.e., the correct equilibrium would no longer have azimuthal symmetry

(and would be much harder to calculate).

For the case of a perfectly conducting wall we have plotted in Figs.

B-1,2,3,4 the quantity b+ + b_ evaluated for x1 - x 2 = 04 for various values

of Ei = mc 2(y0 -1), assuming a thin layer. It is this quantity, b++ b_, which

enters the dispersion relation for the longitudinal mode discussed in the

text.

For a toroidal (accelerator) geometry, the dispersion relation Eq. (31)

is expected to be replaced by

2 2 2

n - ogi 2 (2v/yo)(c 2 /R2 )(mc2/Wo)O/arext (B-15)

where (aw /3)ext denotes the derivative of the circulation frequency with

respect to total particle energy evaluated as if the particle were acted upon

only by the external electric and magnetic fields. In Eq. (B-15), we have

identified the geometric factor g of refs. [8,11] with 1/(1o(b+ + b-)), as

pointed out in ref. 10. Note that the dispersion relationship (B-15) includes

self field effects and that g is always positive for toroidal geometry (with

smooth, perfectly conducting walls).
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b+b_

20

E1=I KeV

15

a
-=0.8 (b-=4.57)R

=0.7 (b-=2.93)
10

=0.6 (b_ =2.13)

=0.4 (b-=1.38)

5

=0.2 (b_-=1.085) b/R
0 I I

1 2 3 4

Fig. B-1. Normalized admittances vs. outer wall position for various inner

wall positions for I - 1 and mc 2(7o-1) I keV.
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b++b_

20-

E1=5 KeV

15R

-0 8 (b-=4.63)

10 0.7 (b_= 2.96)

=0.6 (b = 2.15)

= 0.4 (b = 1.39)

5

=0.2 (b 1.09) b/R
0 I I

1 2 3 4
Fig. B-2. As in Fig. B-I but for mc 2 (yo-1) - 5 keV.
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b++b_

20-

E.j=40 KeV

15 [

a

10 - / R =0.8 (b =5.13)
= .7 bz3.2 4)

z. 0. 6 (b_=r-2.3 2)

5-
S

=0.4 (b..=1.47)

=0.2 (b_=1.13) b/R
0 I I i

1 2 3 4

b+ oo

Fig. B-3. As in Fig. B-I but for mc (y -1) = 40 key.
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b ++b_-

20-

E.1j 300 KeV

15-

01 0. 8 (b- 28.81)

10-

5-

R

0.4 (b 1.86

Fig. B-4. As in Fig. B-1. but for mc 2(-yo 1I) -300 keV. The zeroes of b+ + b-.

correspond to waveguide cutoff frequencies.
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